Long-Term Stability of Planets in Binary Systems

نویسندگان

  • Matthew J. Holman
  • Paul A. Wiegert
چکیده

A simple question of celestial mechanics is investigated: in what regions of phase space near a binary system can planets persist for long times? The planets are taken to be test particles moving in the field of an eccentric binary system. A range of values of the binary eccentricity and mass ratio is studied, and both the case of planets orbiting close to one of the stars, and that of planets outside the binary orbiting the system’s center of mass, are examined. From the results, empirical expressions are developed for both i) the largest orbit around each of the stars, and ii) the smallest orbit around the binary system as a whole, in which test particles survive the length of the integration (104 binary periods). The empirical expressions developed, which are roughly linear in both the mass ratio μ and the binary eccentricity e, are determined for the range 0.0 ≤ e ≤ 0.7-0.8 and 0.1 ≤ μ ≤ 0.9 in both regions, and can be used to guide searches for planets in binary systems. After considering the case of a single low-mass planet in binary systems, the stability of a mutually-interacting system of planets orbiting one star of a binary system is examined, though in less detail. Subject headings: binaries: general — celestial mechanics — planetary systems

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Stability and Prospects of the Detection of Terrestrial/habitable Planets in Multiplanet and Multiple Star Systems

Given the tendency of planets to form in multiples, and the observational evidence in support of the existence of potential planet-hosting stars in binaries or clusters, it is expected that extrasolar terrestrial planes are more likely to be found in multiple body systems. This paper discusses the prospects of the detection of terrestrial/habitable planets in multibody systems by presenting the...

متن کامل

Extreme Habitability: Formation of Habitable Planets in Systems with Close-in Giant Planets and/or Stellar Companions

With more than 260 extrasolar planetary systems discovered todate, the search for habitable planets has found new grounds. Unlike our solar system, the stars of many of these planets are hosts to eccentric or close-in giant bodies. Several of these stars are also members of moderately close (<40 AU) binary or multi-star systems. The formation of terrestrial objects in these ”extreme” environmen...

متن کامل

Habitability of Planets in Binaries

A survey of currently known extrasolar planets indicates that close to 20% of their hosting stars are members of binary systems. While the majority of these binaries are wide (i.e., with separations between 250 and 6500 AU), the detection of Jovian-type planets in the three binaries of γ Cephei (separation of 18.5 AU), GL 86 (separation of 21 AU), and HD 41004 (separation of 23 AU) have brought...

متن کامل

Habitable Planet Formation in Extreme Planetary Systems: Systems with Multiple Stars and/or Multiple Planets

Understanding the formation and dynamical evolution of habitable planets in extrasolar planetary systems is a challenging task. In this respect, systems with multiple giant planets and/or multiple stars present special complications. The formation of habitable planets in these environments is strongly affected by the dynamics of their giant planets and/or their stellar companions. These objects...

متن کامل

On the migration of protoplanets embedded in circumbinary disks

Aims. We present the results of hydrodynamical simulations of low mass protoplanets embedded in circumbinary accretion disks. The aim is to examine the migration and long term orbital evolution of the protoplanets, in order to establish the stability properties of planets that form in circumbinary disks. Methods. Simulations were performed using a grid–based hydrodynamics code. First we present...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998